CS 225

Data Structures

April 3 — Disjoint Sets Implementaiton
Wade Fagen-Ulmschneider, Craig Zilles

Disjoint Sets

Key Ideas:
* Each element exists in exactly one set.

* Find returns a representative element
* Programmatically: find(4) == find(8)

Implementation #1

D> > @&

Find(k):

Union(k1, k2):

Implementation #2

* We will continue to use an array where the index is the
key

* The value of the array is:
-1, if we have found the representative element
* The index of the parent, if we haven’t found the rep. element

* We will call theses UpTrees: @ (b @ @
0|]1]2]3

11| -1 -1

UpTrees

b

-1 (-1 |-1] -1

Disjoint Sets

@

Disjoint Sets Find

int DisjointSets::find() {
if (s[i] < 0) { return i; }
else { return find(s[i]); }

}

B WN R

Running time?

What is the ideal UpTree?

Disjoint Sets Union

void DisjointSets::union(int rl, int r2) {

= WD R

}

Disjoint Sets — Union

00

10

11

10

~N

Disjoint Sets — Smart Union

Union by height

00

10

11

10

~N

Idea: Keep the height of
the tree as small as
possible.

Disjoint Sets — Smart Union

Unionbyheight | 0 | 1 | 2 | 3 | 4 | 5| 6 | 7 | 8 | 9 |10 | 11 |Idea:Keep the height of
the tree as small as
6 | 6 | 6 | 8 10 | 7 7 17 | 4 | 5 | possible.
. . 0 1 2 3 4 5 6 7 8 9 | 10 | 11 | Idea: Minimize the
Union by size number of nodes that
6 | 6 | 6 | 8 10 | 7 7 | 7 | 4 | 5 | increase in height

Both guarantee the height of the tree is:

D

sjoint Sets Find

1| int DisjointSets::find(int i) {

2 if (s[i] < 0) { return i; }

3 else { return find(s[i]), }

4|}

1 | void DisjointSets: :unionBySize (int rootl, int root2) {
2 int newSize = arr [rootl] + arr [root2];

3

4 // If arr [rootl] is less than (more negative), it is the larger set;
5 // we union the smaller set, root2, with rootl.

6 if (arr_[rootl] < arr [root2]) ({

7 arr [root2] = rootl;

8 arr [rootl] = newSize;

9 }
10
11 // Otherwise, do the opposite:
12 else {
13 arr [rootl] = root2;
14 arr [root2] = newSize;
15 }

[
o))

lterators Redux

e Still reading survey responses:
 https://forms.gle/gbWkYeuPpzDHE3ZD9

* Will give additional opportunity on iterator problem:
* Will put out 2 (updated) versions of the problem for practice
e Optional 50 minute exam next week to do one of the other (updated) versions
* Will average your scores between the two exams

https://forms.gle/qbWkYeuPpzDHE3ZD9

Path Compression

Disjoint Sets Analysis

The iterated log function:
The number of times you can take a log of a number.

log*(n) =
0 ,h<1
1+ log*(log(n)),n>1

What is Ig*(25°°36)?

Disjoint Sets Analysis

In an Disjoint Sets implemented with smart unions and
path compression on find:

Any sequence of m union and find operations result in the
worse case running time of O(),
where n is the number of items in the Disjoint Sets.

