CS 225

Data Structures

March 4 — AVL Applications
Wade Fagen-Ulmschneider, Craig Zilles

AVL Runtime Proof

On Friday, we proved an upper-bound on the height of an
AVL tree is 2 xIg(n) or O(Ig(n)):

N(h) := Minimum # of nodes in an AVL tree of height h
N(h) =1 + N(h-1) + N(h-2)
> N(h-1) + N(h-2)
>2x N(h-2)
> 2h/2

Theorem #1.:
Every AVL tree of height h has at least 2"/2 nodes.

AVL Runtime Proof

On Friday, we proved an upper-bound on the height of an
AVL tree is 2 xIg(n) or O(Ig(n)):

of nodes (n) 2 N(h) > 21/2

n > 2h/2

Ig(n) > h/2

2 xlg(n) > h

h <2 xlg(n) ,forh21

Proved: The maximum number of nodes in an AVL tree of
height h is less than 2 x Ig(n).

Summary of Balanced BST

AVL Trees
- Max height: 1.44 * [g(n)
- Rotations:

Summary of Balanced BST

AVL Trees
- Max height: 1.44 * [g(n)
- Rotations:

Zero rotations on find
One rotation on insert
O(h) == O(lg(n)) rotations on remove

Red-Black Trees

- Max height: 2 * Ig(n)

- Constant number of rotations on insert (max 2), remove
(max 3).

Why AVL?

Summary of Balanced BST

Pros:
- Running Time:

- Improvement Over:

- Great for specific applications:

Summary of Balanced BST

Cons:
- Running Time:

- In-memory Requirement:

Red-Black Trees in C++

C++ provides us a balanced BST as part of the standard library:
std: :map<K, V> map;

Red-Black Trees in C++
V & std: :map<K, V>::operator[] (const K &)

Red-Black Trees in C++
V & std: :map<K, V>::operator[] (const K &)

std: :map<K, V>::erase(const K &)

Red-Black Trees in C++

iterator std::map<K, V>::lower bound(const K &);
iterator std::map<K, V>::upper bound(const K &);

CS 225 -- Course Update

Over the next two days, your grades will be uploaded into
Compass for our first “grade update” where we will
calculate your current course grade for you.

We will discuss the grades for the course as a whole (ex:
average, etc) in lecture on Wednesday.

Iterators

Why do we care?

DFS dfs(...);
for (ImageTraversal::Iterator it
std: :cout << (*it) << std::endl;

}

= WD =

dfs.begin(); it !'= dfs.end(); ++it) {

Iterators

Why do we care?

DFS dfs(...);
for (ImageTraversal::Iterator it = dfs.begin(); it !'= dfs.end(); ++it) {
std: :cout << (*it) << std::endl;

}

= WD =

DFS dfs(...);
for (const Point & p : dfs) {
std: :cout << p << std::endl;

}

= WD R

Iterators

Why do we care?

1|(DFS dfs(...);

2 | for (ImageTraversal::Iterator it = dfs.begin(); it !'= dfs.end(); ++it) {
3 std: :cout << (*it) << std::endl;

41}

1|(DFS dfs(...);

2| for (const Point & p : dfs) {

3 std: :cout << p << std::endl;

41}

= WDN =

ImageTraversal & traversal = /* ... */;
for (const Point & p : traversal) {
std: :cout << p << std::endl;

}

Iterators

ImageTraversal *traversal = /* ... */;
for (const Point & p : traversal) {
std: :cout << p << std::endl;

}

= WDN =

Every Data Structure So Far

Unsorted Sorted Unsorted Sorted Binary Tree | BST AVL
Array Array List List

Find

Insert

Remove

Traverse

Range-based Searches

Q: Consider points in 1D: p = {P1, Py, ++» Pp}-
..what points fall in [11, 42]?

Tree construction:

Range-based Searches

Balanced BSTs are useful structures for range-based and
nearest-neighbor searches.

Q: Consider points in 1D: p = {P1, Py, ++» Ppn}-
..what points fall in [11, 42]?

Range-based Searches

Q: Consider points in 1D: p = {P1, Py, ++» Pp}-
..what points fall in [11, 42]?

Range-based Searches

Q: Consider points in 1D: p = {P1, Py, ++» Pp}-
..what points fall in [11, 42]?

Tree construction:

Range-based Searches

Range-based Searches

Range-based Searches

Q: Consider points in 1D: p = {P1, Py, ++» Pp}-
..what points fall in [11, 42]?

Range-based Searches

Running Time

