CS 225

Data Structures

February 13 — Trees
Wade Fagen-Ulmschneider, Craig Zilles



Iterators

Suppose we want to look through every element in our
data structure:




Iterators encapsulated access to our data:
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Iterators

Every class that implements an iterator has two pieces:

1. [Implementing Class]:



Iterators

Every class that implements an iterator has two pieces:

2. [Implementing Class’ Iterator]:
* Must have the base class: std: :iterator

* std::iterator requires us to minimally implement:



Iterators encapsulated access to our data:
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stlList.cpp
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#include <list>
#include <string>
#include <iostream>

struct Animal ({
std: :string name, food;
bool big;
Animal (std: :string name = "blob", std::string food = "you", bool big = true)
name (name) , food(food), big(big) { /* nothing */ }
}i

int main() {
Animal g("giraffe", "leaves", true), p("penguin", "fish", false), b("bear");
std: :vector<Animal> zoo;

zoo.push back(qg) ;
zoo.push back (p) ; // std::vector’s insertAtEnd
zoo.push back(b) ;

for ( std::vector<Animal>::iterator it = zoo.begin(); it '= zoo.end(); it++ ) {
std: :cout << (*it) .name << " " << (*it).food << std::endl;

}

return O;




stlList.cpp

o doy Ul WN =

#include <list>
#include <string>
#include <iostream>

struct Animal ({
std: :string name, food;
bool big;
Animal (std: :string name = "blob", std::string food = "you", bool big = true)
name (name) , food(food), big(big) { /* none */ }
}i

int main() {
Animal g("giraffe", "leaves", true), p("penguin", "fish", false), b("bear");
std: :vector<Animal> zoo;

zoo.push back(qg) ;

zoo.push back (p) ; // std::vector’s insertAtEnd
zoo.push back(b) ;

for ( const Animal & animal : zoo ) {

std: :cout << animal.name << " " << animal.food << std::endl;

return 0;




For Each and Iterators

for ( const TYPE & variable : collection ) {
// ...
}

14 | std: : vector<Animal> zoo;

20 | for ( const Animal & animal : zoo ) {

21 std: :cout << animal .name << " " << animal.food << std::endl;
22 |}




For Each and Iterators

for ( const TYPE & variable
//
}

collection ) {

14
20
21
22

std: :vector<Animal> zoo;

for ( const Animal & animal

std: :cout << animal.name << "

}

zoo ) {
" << animal.food << std::endl;

20
21
22

for ( const Animal & animal

std: :cout << animal.name << "

}

4| std: imultimap<sid::string, Animal> zoo;

zoo ) {
" << animal.food << std::endl;




Exam Programming A

* 2 hours
* 1 code reading question; 2 POTD-like coding questions

* Topics: see course website
* C++, List implementations (linked list, array), Stack/Queue ADT
e Labs: lab_intro, lab_debug, lab_memory, lab_inheritance

* MP1 and MP2

Be sure you know how to do POTDs from
EWS Linux machines !!!



Honors Section

CS 225 offers a one-credit add on honors section!

What is data science?

Algorithms
Visualizations

Python Data Structures JavaScript

pandas d3.js



Honors Section

Course Starts: Tomorrow, Thursday, February 14, 2019

Meets: Thursdays: 5:00 — 5:50pm, 1404 Siebel Center
If you are interested in adding the course, come to the first lecture!

Taught By: Wade Fagen-Ulmschneider (CS faculty)

Open to EVERYONE — not required to be part of an honors
program. Fulfills HCLA, James Scholar, etc.



Trees

“The most important non-linear data
structure in computer science.”
- Donald Knuth, The Art of Programming, Vol. 1

A tree is:



] m “Mario Family Line”
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More Specific Trees

We'll focus on binary trees:

* A binary tree is rooted — every node can be reached via
a path from the root




More Specific Trees

We'll focus on binary trees:

* A binary tree is acyclic — there are no cycles within the
graph




More Specific Trees

We'll focus on binary trees:

* A binary tree contains two or fewer children — where
one is the “left child” and
one is the “right child”:




Tree Terminology

* Find an edge that is not on the longest path in the tree. Give that edge a
reasonable name.

One of the vertices is called the root of the tree. Which one?
 |dentify the vertices that have a parent but no sibling.
* How many parents does each vertex have?

* Which vertex has the fewest children?

* Which vertex has the most ancestors?

* Which vertex has the most descendants?

* List all the vertices is b’s left subtree.

e List all the leaves in the tree.




Binary Tree — Defined

A binary tree T is either:

OR



Tree Property: height

height(T): length of the longest path G
from the root to a leaf

Given a binary tree T: ° a

height(T) =



Tree Property: full
A tree Fis full if and only if:

1.

2.



Tree Property: perfect
A perfect tree P is: G

1. (s ) ()
2. (&) (D)) (5



Tree Property: complete

Conceptually: A perfect tree for every
level except the last, where the last level
if “pushed to the left”.

Slightly more formal: For any level k in
[0, h-1], k has 2X nodes. For level h, all
nodes are “pushed to the left”.



Tree Property: complete

A complete tree C of height h, C,:
1.C, =1}
2. C, (where h>0) ={r, T,, Tz} and either:

T is and T is

OR

T is and T is




Tree Property: complete
Is every full tree complete? G
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If every complete tree full?



