CS 225

Data Structures

February 13 — Trees
Wade Fagen-Ulmschneider, Craig Zilles

Iterators

Suppose we want to look through every element in our
data structure:

Iterators encapsulated access to our data:

I

I

N T

__.-»Qj ListNode *

index

(x, vy, z)

Iterators

Every class that implements an iterator has two pieces:

1. [Implementing Class]:

Iterators

Every class that implements an iterator has two pieces:

2. [Implementing Class’ Iterator]:
* Must have the base class: std: :iterator

* std::iterator requires us to minimally implement:

Iterators encapsulated access to our data:

I

I

g

stlList.cpp

o doy Ul WN =

#include <list>
#include <string>
#include <iostream>

struct Animal ({
std: :string name, food;
bool big;
Animal (std: :string name = "blob", std::string food = "you", bool big = true)
name (name) , food(food), big(big) { /* nothing */ }
}i

int main() {
Animal g("giraffe", "leaves", true), p("penguin", "fish", false), b("bear");
std: :vector<Animal> zoo;

zoo.push back(qg) ;
zoo.push back (p) ; // std::vector’s insertAtEnd
zoo.push back(b) ;

for (std::vector<Animal>::iterator it = zoo.begin(); it '= zoo.end(); it++) {
std: :cout << (*it) .name << " " << (*it).food << std::endl;

}

return O;

stlList.cpp

o doy Ul WN =

#include <list>
#include <string>
#include <iostream>

struct Animal ({
std: :string name, food;
bool big;
Animal (std: :string name = "blob", std::string food = "you", bool big = true)
name (name) , food(food), big(big) { /* none */ }
}i

int main() {
Animal g("giraffe", "leaves", true), p("penguin", "fish", false), b("bear");
std: :vector<Animal> zoo;

zoo.push back(qg) ;

zoo.push back (p) ; // std::vector’s insertAtEnd
zoo.push back(b) ;

for (const Animal & animal : zoo) {

std: :cout << animal.name << " " << animal.food << std::endl;

return 0;

For Each and Iterators

for (const TYPE & variable : collection) {
// ...
}

14 | std: : vector<Animal> zoo;

20 | for (const Animal & animal : zoo) {

21 std: :cout << animal .name << " " << animal.food << std::endl;
22 |}

For Each and Iterators

for (const TYPE & variable
//
}

collection) {

14
20
21
22

std: :vector<Animal> zoo;

for (const Animal & animal

std: :cout << animal.name << "

}

zoo) {
" << animal.food << std::endl;

20
21
22

for (const Animal & animal

std: :cout << animal.name << "

}

4| std: imultimap<sid::string, Animal> zoo;

zoo) {
" << animal.food << std::endl;

Exam Programming A

* 2 hours
* 1 code reading question; 2 POTD-like coding questions

* Topics: see course website
* C++, List implementations (linked list, array), Stack/Queue ADT
e Labs: lab_intro, lab_debug, lab_memory, lab_inheritance

* MP1 and MP2

Be sure you know how to do POTDs from
EWS Linux machines !!!

Honors Section

CS 225 offers a one-credit add on honors section!

What is data science?

Algorithms
Visualizations

Python Data Structures JavaScript

pandas d3.js

Honors Section

Course Starts: Tomorrow, Thursday, February 14, 2019

Meets: Thursdays: 5:00 — 5:50pm, 1404 Siebel Center
If you are interested in adding the course, come to the first lecture!

Taught By: Wade Fagen-Ulmschneider (CS faculty)

Open to EVERYONE — not required to be part of an honors
program. Fulfills HCLA, James Scholar, etc.

Trees

“The most important non-linear data
structure in computer science.”
- Donald Knuth, The Art of Programming, Vol. 1

A tree is:

] m “Mario Family Line”
<http://limitbreak.gameriot.com/blogs/

Caveat-Emptor/Mario-Family-Line>

http://limitbreak.gameriot.com/blogs/Caveat-Emptor/Mario-Family-Line

THE MAR/IO FAM/LY LINE

DONKEY KONG DPONKEY KONWNG JR.
“RCADE, 198! ARCADE, 1982

R
MARIC'S BOMES AWAY
GAME AND WATCH, 1983

MARIC'S CEMENT FACTORY
GAME AND WATCH, 1983

WRECKING CREW

PINSALL SUPER MARIO BROS. PUNCH BALL MARIO BROS. MARIO BROS. SPECIAL
nES, 1985 wES, 19849 NES, 1985 wEC PC-BBOL. 1984 wEC PC-BBOI, 1984
8 e B
-

WRECKING CREW 98
SUPER FAMICOM, 1998

e

A0 BROS,

More Specific Trees

We'll focus on binary trees:

* A binary tree is rooted — every node can be reached via
a path from the root

More Specific Trees

We'll focus on binary trees:

* A binary tree is acyclic — there are no cycles within the
graph

More Specific Trees

We'll focus on binary trees:

* A binary tree contains two or fewer children — where
one is the “left child” and
one is the “right child”:

Tree Terminology

* Find an edge that is not on the longest path in the tree. Give that edge a
reasonable name.

One of the vertices is called the root of the tree. Which one?
 |dentify the vertices that have a parent but no sibling.
* How many parents does each vertex have?

* Which vertex has the fewest children?

* Which vertex has the most ancestors?

* Which vertex has the most descendants?

* List all the vertices is b’s left subtree.

e List all the leaves in the tree.

Binary Tree — Defined

A binary tree T is either:

OR

Tree Property: height

height(T): length of the longest path G
from the root to a leaf

Given a binary tree T: ° a

height(T) =

Tree Property: full
A tree Fis full if and only if:

1.

2.

Tree Property: perfect
A perfect tree P is: G

1. (s) ()
2. (&) (D)) (5

Tree Property: complete

Conceptually: A perfect tree for every
level except the last, where the last level
if “pushed to the left”.

Slightly more formal: For any level k in
[0, h-1], k has 2X nodes. For level h, all
nodes are “pushed to the left”.

Tree Property: complete

A complete tree C of height h, C,:
1.C, =1}
2. C, (where h>0) ={r, T,, Tz} and either:

T is and T is

OR

T is and T is

Tree Property: complete
Is every full tree complete? G

OJOONO
ONO,

If every complete tree full?

