CS 225

Data Structures

January 30 - Inheritance
Wade Fagen-Ulmschneider, Craig Zilles

Destructor

[Purpose]:

Destructor

[Purpose]: Free any resources maintained by the class.

Automatic Destructor:
1. Exists only when no custom destructor is defined.

2. [Functionality]:

[Invoked]:

cs225/Cube.h

cs225/Cube.cpp

o do LT WN =

#pragma once

namespace cs225 {
class Cube {
public:
Cube () ;
Cube (double length) ;
Cube (const Cube & other);
~Cube () ;

double getVolume () const;
double getSurfaceArea () const;

private:
double length ;
}i

o VW W Jd

12
13
14
15

16
17
18
19
20
21
22
23
24
25

namespace cs225 {

Cube: :Cube () {

length = 1;
cout << "Default ctor"

<< endl;

}

Cube: :Cube (double length) {
length = length;
cout << "l-arg ctor"
<< endl;

//

Operators that can be overloaded in C++

OOTETMM+ - * / b + -
siwise [

| A~ ~ << >>

Assignment [

I E == I= > < >= <K=
Logical ' && ||

(1 0O ->

cs225/Cube.h

cs225/Cube.cpp

o do LT WN =

#pragma once

namespace cs225 {
class Cube {
public:
Cube () ;
Cube (double length) ;
Cube (const Cube & other);
~Cube () ;

double getVolume () const;
double getSurfaceArea() const;

private:
double length ;
}i

40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

One Very Special Operator

Definition Syntax (.h):
Cube & operator=(const Cube& s)

Implementation Syntax (.cpp):
Cube & Cube: :operator=(const Cubeé& s)

Assighment Operator

Similar to Copy Constructor:

Different from Copy Constructor:

Assighment Operator

Copies an object Destroys an object

Copy constructor

Assignment operator

Destructor

MP: Extra Credit

The most successful MP is an MP done early!

Unless otherwise specified in the MP, we will award +1
extra credit point per day for completing Part 1 before the
due date (up to +7 points):

Example for MP2:

+7 points: Complete by Monday, Feb. 4 (11:59pm)

+6 points: Complete by Tuesday, Feb. 5 (11:59pm)

+5 points: Complete by Wednesday, Feb. 6 (11:59pm)
+4 points: Complete by Thursday, Feb. 7 (11:59pm)
+3 points: Complete by Friday, Feb. 8 (11:59pm)

+2 points: Complete by Saturday, Feb. 9 (11:59pm)
+1 points: Complete by Sunday, Feb. 10 (11:59pm)
MP2 Due Date: Monday, Feb. 11

MP: Extra Credit

We will give partial credit and maximize the value of your extra
credit:

You made a submission and missed a few edge cases in Part 1:
Monday: +7 * 80% = +5.6 earned

MP: Extra Credit

We will give partial credit and maximize the value of your extra
credit:

You made a submission and missed a few edge cases in Part 1:
Monday: +7 * 80% = +5.6 earned

You fixed your code and got a perfect score on Part 1:
Tuesday: +6 * 100% = +6 earned (maximum benefit)

MP: Extra Credit

We will give partial credit and maximize the value of your extra
credit:

You made a submission and missed a few edge cases in Part 1:
Monday: +7 * 80% = +5.6 earned

You fixed your code and got a perfect score on Part 1:
Tuesday: +6 * 100% = +6 earned (maximum benefit)

You began working on Part 2, but added a compile error:
Wednesday: +5 * 0% = +0 earned (okay to score lower later)

The “Rule of Three”

If it is necessary to define any one of these three
functions in a class, it will be necessary to define all
three of these functions:

Inheritance

Shape.h

00 JdJo U

©

11
12
13
14
15
16
17
18
19
20

class Shape {
public:
Shape () ;
Shape (double length) ;
double getLength() const;

private:
double length ;

};

Shape.cpp

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Shape: :Shape () {
length = 1;
}

Shape: : Shape (double length) ({
length = length;
}

double Shape: :getLength ()
const {
return length ;

}

Square.h

Square.cpp

oo Jdoy Ul dWDNR

#pragma once
#include "Shape.h"

class Square {
public:
double getArea() const;

private:
// Nothing!
}i

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Derived Classes

[Public Members of the Base Class]:

main.cpp

5

6
7
8

int main() {
Square sq;

sqg.getLength(); // Returns 1, the length init’d

// by Shape’s default ctor

[Private Members of the Base Class]:

Square.h

Square.cpp

oo Jdoy Ul dWDNR

#pragma once
#include "Shape.h"

class Square {
public:

double getArea() const;
private:

// Nothing!
}i

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Cube.cpp

Cube.h

4 | class Cube {

5 public:

6 double getVolume () const;

7 double getSurfaceArea () const;
8

9 private:

10 // Nothing!

11 |};

12

13

14

15

16

17

18

19
20

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

RubikCube.h

RubikCube.cpp

o do LT WN =

MNNNRRRRRRRRERRR
MNFRFoOWwWOIOULA WNKROV

#pragma once

class RubikCube : public Cube {
public:
void solve() ;

void turnRow(int r);
void turnColumn (int c);
void rotate (int direction) ;

private:

//
};

oJdJoyUund WDN =

#include "RubikCube.h"

Virtual

Cube.cpp

RubikCube.cpp

oJdJoyUund WDN =

Cube: :print 1() {
cout << "Cube" << endl;
}

Cube: :print 2() {
cout << "Cube" << endl;
}

virtual Cube::print 3() {
cout << "Cube" << endl;

}

virtual Cube::print 4() {
cout << "Cube" << endl;

}

// In .h file:
virtual Cube::print 5() = 0;

o do 1T WN =

// No print 1() in RubikCube.cpp

RubikCube: :print 2() {
cout << "Rubik" << endl;
}

// No print 3() in RubikCube.cpp

RubikCube: :print 4() {
cout << "Rubik" << endl;
}

RubikCube: :print 5() {
cout << "Rubik" << endl;

Runtime of Virtual Functions

RubikCube rc;
virtual-main.cpp Cube c; RubikCube c; Cube &c = rc;

c.print 1();

c.print 2();

c.print 3();

c.print 4();

c.print 5();

