CS 2 #37: Minimum Spanning Trees (MST) Modifying BFS to create DFS
/ N\ < l h d le 1l | BFS(G):
2 5/ April 17,2019 - Fagen-Ulmschneider, Zilles > Input: Graph, G
3 Output: A labeling of the edges on
Graph Traversal BFS 4 G as discovery and cross edges
- 5
6 foreach (Vertex v : G.vertices()):
Big Ideas: Utility of a BFS Traversal 7 setlLabel (v, UNEXPLORED)
. 8 foreach (Edge e : G.edges()):
Obs. 1: Traversals can be used to count components. ° setiabel (o, UNEXPLORBD)
Obs. 2: Traversals can be used to detect cycles. 10 | foreach (Vertex v : G.vertices()):
. s : 11 if getLabel (v) == UNEXPLORED:
Obs. 3: In BFS, d provides the shortest distance to every 12 255 (6 v)
vertex. 13
Obs. 4: In BFS, the endpoints of a cross edge never differ in it BFgé:lﬁev;:
distance, d, by more than 1: |d(u) -d(v)| =1 16 | setLabel(v, VISITED)
17 q.enqueue (V)
18
19 while !'q.empty():
2 = q.
DFS Gl'aph Traversal ‘/A\; — (le 22 goregczeﬁzzié; w : G.adjacent(v)):
) T 7 22 if getLabel (w) == UNEXPLORED:
Idea: Traverse deep into the [. 23 setLabel (v, w, DISCOVERY)
graph quickly, visiting more [® & A \ 24 setLabel (w, VISITED)
di des bef ichb | - - \\F_}) (H) 25 q.enqueue (w)
1stant nodes betore neighbors. 3 ~ \ — 26 elseif getLabel(v, w) == UNEXPLORED:
&— 27 setLabel (v, w, CROSS)
Two types of edges: K- = —6)

- Minimum Spanning Tree

“The Muddy City” by CS Unplugged, Creative Commons BY-NC-SA 4.0

A Spanning Tree on a connected graph G is a subgraph, G’, such
that:

1. Every vertexis Gisin G’ and

2. G’is connected with the minimum number of edges

This construction will always create a new graph that is a
(connected, acyclic graph) that spans G.

A Minimum Spanning Tree is a spanning tree with the minimal
total edge weights among all spanning trees.

e Every edge must have a weight
o The weights are unconstrained, except they must be
additive (eg: can be negative, can be non-integers)
e Output of a MST algorithm produces G’
o G’is aspanning graph of G
o G’isatree

G’ has a minimal total weight among all spanning trees. There may be
multiple minimum spanning trees, but they will have the same total
weight.

Pseudocode for Kruskal’s MST Algorithm

1 | KruskalMST (G) :

2 DisjointSets forest

3 foreach (Vertex v : G):

4 forest.makeSet (v)

5

6 PriorityQueue Q // min edge weight
7 foreach (Edge e : G):

8 Q.insert (e)

9

10 Graph T = (V, {})

11

12 while |T.edges()| < n-1:

13 Vertex (u, v) = Q.removeMin ()

14 if forest.find(u) != forest.find(v):
15 T.addEdge (u, v)
16 forest.union(forest.find(u),
17 forest.find(v))
18

19 return T

Kruskal’s Algorithm (A, D)

. (E, H)
B) 1 5 (F, G)

o

é\
5 c
16 (8, D)
10
H

1 (G, E)
(G, H)
(E, Q)

@ Ll

= (E, F)
(F, C)
(D, E)
(B, C)
(C, D)
(A, F)
(D, F)

CS 225 — Things To Be Doing:

RN

Programming Exam C: Thursday, April 18 — Sunday, April 21
MP7 Released: Part 1 due April 22nd!

lab_ ml this week in lab

Daily POTDs are ongoing for +1 point /problem

