#22: kd-Trees and BTrees Intro kd-Tree Motivation:
2 5

March 6, 2019 - Fagen-Ulmschneider, Zilles First, let’s try and divide our space up:
Range-based Searches: .
Q: Consider points in 1D: p = {p, P2, ---, Pn}- o

...what points fall in [11, 42]?

Tree Construction: .
kd-Tree Construction:

How many dimensions exist in our input space?

How do we want to “order” our dimensions?

[J
P2 P
Ps Ppg
Range-based Searches: °
P
[J
Ps Y
Pa []
P7

Running Time:

Extending to k-dimensions:
Consider points in 2D: p = {P1, P2y «+es Pn}:

. ...what points are inside a range (rectangle)?
P2 o ...what is the nearest point to a query point q?
Ps Pg
[]
Py
L]
Ps Y
Pa o
P7

Motivation
Can we always fit our data in main memory?

Where else do we keep our data?

vs. CPU: 3 GHz == 3 billion ops / sec * cores

BTree Motivations
Knowing that we have long seek times for data, we want to build a
data structure with two (related) properties:

1.

AVL Operations on Disk:

How deep do AVL trees get?

2.
BTreem
-3 8 23 | 25 | 31 | 42 43 | 55
m=9
Goal: Build a tree that uses /node!

...optimize the algorithm for your platform!

A BTree of order m is an m-way tree where:

1. All keys within a node are ordered.
2. All leaves contain no more than m-1 nodes.

BTree Insert, using m=5

...when a BTree node reaches m keys:

CS 225 — Things To Be Doing:

Programming Exam B starts next Tuesday (March 12th)
MP4 extra credit ongoing (final deadline Monday, March. 11th)
lab_avl released this week; course feedback in lab this week!

hepr

Daily POTDs are ongoing!

